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Abstract 

Glacier calving fronts are highly dynamic environments that are becoming ubiquitous as glaciers recede and, in many cases, 

develop proglacial lakes. Monitoring of calving fronts is necessary to fully quantify the glacier ablation budget and to warn 

downstream communities of the threat of hazards, such as glacial lake outburst floods (GLOFs). Timelapse camera arrays, 10 

with structure-from-motion photogrammetry, can produce regular 3D models of glaciers to monitor changes in the ice, but are 

seldom incorporated into monitoring systems owing to the high cost of equipment. In this proof-of-concept study at 

Fjallsjökull, Iceland, we present and test a low-cost camera system based on Raspberry Pi computers and compare the resulting 

point cloud data to a reference cloud generated using an unoccupied aerial vehicle (UAV). The mean absolute difference 

between the Raspberry Pi and UAV point clouds is found to be 0.301 m with a standard deviation of 0.738 m. We find that 15 

high-resolution point clouds can be robustly generated from cameras positioned up to 1.5 km from the glacier (mean absolute 

difference 0.341 m, standard deviation 0.742 m). Combined, these experiments suggest that for monitoring calving events in 

glaciers, Raspberry Pi cameras represent an affordable, flexible, and practical option for future scientific research. Owing to 

the connectivity capabilities of Raspberry Pi computers, this opens the possibility for real-time photogrammetry of glacier 

calving fronts for deployment as an early warning system to calving-triggered GLOFs.   20 
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1.  Introduction 

Monitoring glacier calving fronts is becoming increasingly important as climate warming changes the stability of the 

cryosphere. Globally, glacier frontal positions have receded rapidly in recent decades (Marzeion et al., 2014; Zemp et al., 

2015), leading to an increased threat of glacial lake outburst floods (GLOFs) from newly formed proglacial lakes at the glacier 30 

terminus (Tweed and Carrivick, 2015). Large ice calving events and their impact into glacial lakes can trigger violent waves 

(Lüthi and Vieli, 2016), and ultimately GLOF events if the wave goes on to overtop the impounding dam, though both the 

magnitude and frequency of this phenomenon are poorly quantified owing to a lack of appropriate monitoring (Emmer et al., 

2015; Veh et al., 2019). Satellites are able to provide near-continuous observations of lake growth (Jawak et al., 2015), hazard 

development (Quincey et al., 2005; Rounce et al., 2017) and, over large glaciers, calving rate through iceberg detection (Sulak 35 

et al., 2017; Shiggins et al., 2021). However, to measure frontal dynamics at a high spatial and temporal resolution, which is 

particularly necessary over smaller mountain glaciers, monitoring requirements can only be met by in situ sensors.  

 

Accurate 3D models of glaciers and their calving fronts are necessary to fully evaluate the hazards they pose (Kääb, 2000; 

Fugazza et al., 2018) and to better understand frontal dynamics (Ryan et al., 2015). Where in situ camera sensors have been 40 

used to monitor glacier fronts as part of an early warning system, stationary cameras have previously been used to relay regular 

images to be analysed externally (Fallourd et al., 2010; Rosenau et al., 2013; Giordan et al., 2016; How et al., 2020). This can 

be useful for monitoring glacier velocity, snowfall, and calving dynamics, but remains a 2D snapshot of glacier behaviour and 

offers little in terms of being able to detect the magnitude of an individual event or process. 3D models, on the other hand, 

permit more detailed analysis, such that the physics involved in glacier calving can even be captured (James et al., 2014; 45 

Mallalieu et al., 2020). Unoccupied aerial vehicles (UAVs) have been used regularly to capture high-resolution 3D models of 

glacier fronts (Ryan et al., 2015; Bhardwaj et al., 2016; Chudley et al., 2019) but, as yet, these systems are not autonomous 

and are therefore dependent on an operator being present, as well as often being highly expensive (many thousands of dollars). 

 

Arrays of fixed cameras can be positioned around a glacier front to capture images repeatedly over long time periods. The 50 

resulting imagery can then be used to photogrammetrically generate 3D models at a high temporal resolution and analyse 

change over days, months, or years. Off-the-shelf timelapse cameras provide some of the cheapest ways of reliably collecting 

imagery for repeat photogrammetry and have been deployed at Russell Glacier, Greenland, to monitor seasonal calving 

dynamics (Mallalieu et al., 2017). Elsewhere in glaciology, timelapse arrays using more expensive DSLR-grade cameras have 

been used for repeat photogrammetry to quantify ice cliff melt on Langtang glacier at high spatial resolution (Kneib et al., 55 

2022). In other disciplines, timelapse arrays for photogrammetry have been used to monitor the soil surface during storms 

(Eltner et al., 2017), the stability of rock slopes (Kromer et al., 2019), and evolution of thaw slumps (Armstrong et al., 2018), 

for example. The key limitation of these studies, and this setup design, is that a site revisit is necessary to collect data and 

analysis is therefore far from real-time. Autonomous photogrammetry, whereby 3D models are created with no user input, is 
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still in its infancy but shows great promise, with machine learning used to optimise camera positions (Eastwood et al., 2020), 60 

point cloud stacking to enhance timelapse photogrammetry (Blanch et al., 2020) and user-friendly toolsets for monoscopic 

photogrammetry (How et al., 2020). Real-time data transmission is the next step in autonomous timelapse photogrammetry, 

but trail cameras with cellular connectivity are many hundreds of dollars per unit, rendering this setup unaffordable for most 

monitoring schemes. 

 65 

We have designed a system, based on Raspberry Pi computers, to capture science-grade images for structure-from-motion 

(SfM) photogrammetry in glacial landscapes for ~$120 per unit – less than half the cost of an equivalent off-the-shelf trail 

camera with connectivity. Raspberry Pi computers are small, low-cost, and were designed with the intention of teaching and 

learning programming in schools. Their ease of use and affordability means they have also been used extensively as field 

sensors in the geosciences (Ferdoush and Li, 2014) as the quality of their camera sensors have developed to a science-grade 70 

level (Pagnutti et al., 2017). In hazard management, Raspberry Pi cameras have been used as standalone monitoring systems 

to complement wider internet-of-things (IoT) networks (Aggarwal et al., 2018) and attached to UAVs to produce 

orthophotographs (Piras et al., 2017). In glacierised environments, the durability, low-cost, and low power requirements of 

Raspberry Pis means they have been used to complement sensor networks, such as controlling the capture of DSLR-grade 

timelapse cameras (Carvallo et al., 2017; Giordan et al., 2020) or as a ground station for UAV-based research (Chakraborty et 75 

al., 2019). However, to our knowledge, Raspberry Pis and low-cost camera modules have never been the focus of a glaciology 

investigation and their potential for SfM in the wider geosciences has yet to be fully realised.  

 

The aim of this study was, therefore, to evaluate the quality of Raspberry Pi imagery for photogrammetric processing, with a 

view to incorporating low-cost sensors in glacier monitoring systems. Given that the highest accuracy glacier front 3D models 80 

gathered from photogrammetry are derived from UAV imagery (typical horizontal uncertainty of 0.12 m (0.14 m vertical) 

even in the absence of ground control points (Chudley et al., 2019)) we chose to use a UAV-based point cloud as our primary 

reference dataset. We intensively deployed both sensor systems (ground-based Pis, and aerial UAV) at Fjallsjökull, Iceland 

over a four-day period. As a secondary objective, we also sought to understand the limitations of Raspberry Pi by deploying 

Raspberry Pi sensors at a range of distances to the glacier front and removing images in the processing of point clouds to 85 

identify the fewest frames necessary for generating accurate 3D models. 

 

2. Methods 

2.1. Study site – Fjallsjökull, Iceland  

Fjallsjökull is an outlet glacier of Öræfajökull, an ice-covered volcano to the south of the wider Vatnajökull ice cap, in south-90 

east Iceland (Figure 1). Recession and thinning of Fjallsjökull has been underway since the end of the Little Ice Age, but has 

https://doi.org/10.5194/nhess-2022-201
Preprint. Discussion started: 9 August 2022
c© Author(s) 2022. CC BY 4.0 License.



4 

 

substantially accelerated in recent decades owing to climate warming (Howarth and Price, 1969; Chandler et al., 2020). 

Fjallsjökull terminates in a large (~4 km2) proglacial lake – Fjallsárlón – which is also increasing in size as Fjallsjökull recedes 

(Schomacker, 2010). Calving of Fjallsjökull is regular and has increased in frequency in recent decades as the glacier has 

accelerated, driven by the expansion of Fjallsárlón (Dell et al., 2019). As of September 2021, the calving face of Fjallsjökull 95 

was approximately 3 km wide, with ~2.4 km of this accessible from a boat (the northernmost 600 m had large, stationary 

icebergs which were dangerous to navigate; see Figure 1). We selected Fjallsjökull as a study site due to its accessibility, 

ability to conduct surveys from boat and shoreline, and variation in calving margin heights (ranging from ~1 m to ~15 m) to 

test the performance of our camera system under a diverse range of glaciological settings. 

 100 

 

Figure 1 – Fjallsjökull (flowing left-to-right), terminating in Fjallsárlón, captured by Planet Imagery on 10th September 2021. A-H 

denote the eight point cloud sub-sections generated by both the Raspberry Pi and UAV. X-Y denote the start and end of land-based 

data collection at approximately 25 m intervals along the shoreline, used to generate sub-section B from a distance. 
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 105 

2.2. Hardware and survey details 

We tested the Raspberry Pi High Quality Camera Module with a 16 mm telephoto lens in comparison to images taken from a 

DJI Mavic 2 Pro UAV. We also tested the Raspberry Pi Camera Module V2 (of lower resolution, but a cheaper option), due 

to its science-grade radiometric calibration (Pagnutti et al., 2017), but initial tests indicated the quality of the long-range 

imagery was too low to proceed with generating 3D data. The Raspberry Pi camera was attached to a Raspberry Pi 4B computer 110 

with an LCD display to visualise images, and adjust focus, as they were captured. Technical comparisons of the setups are 

given in Table 1.  

 

 Raspberry Pi  DJI Mavic 2 Pro UAV Typical time lapse camera 

package (Canon Rebel T5) 

Camera Sensor Sony IMX477 1” CMOS CMOS (APS-C) 

Image size (px) 4056 x 3040 5472 x 3648 5184 x 3456 

Resolution 

(megapixels) 

12.3 20 18 

Horizontal field of 

view 

44.6° 77° 63° 

Images captured 315 729 N/A 

Cost $120* $1,500 $2,600 

 

Table 1 – Comparison of technical specifications between Raspberry Pi and UAV sensors. A typical time lapse camera package is 115 
provided as a comparison and follows the setup from Kienholz et al. (2019). The Raspberry Pi High Quality camera module is fitted 

with a 16 mm telephoto lens. *In this study, we used a more expensive Raspberry Pi computer (4B) in order to fit a screen for in-

field monitoring of images, however the $120 cost applies to a cheaper model (Zero W).  

 

The Pi was mounted in a fixed position on a boat which traversed the southernmost ~2.4 km of the ~3 km Fjallsjökull calving 120 

face, around 500 m from the glacier, while the UAV flew above this boat (Figure 2). The Raspberry Pi was triggered manually 

approximately once every ten seconds throughout the transect capturing 315 images in total. While we operated the system 

manually herein, it is important to note, however, that the system is also designed to trigger autonomously. At the same time, 

the UAV conducted two flights, capturing 729 images, ensuring no calving occurred between collecting data from the two 

sensors. The UAV flew closer (~250 m) to the glacier terminus than the boat transect to ensure the highest possible accuracy 125 

in data collection. In the majority of images, the UAV camera was facing the flat calving face of the glacier. While the UAV 
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has onboard software to autofocus images, we manually checked and altered the focus of the Raspberry Pi camera between 

images during the boat transect to ensure pictures were not blurry as the boat varied in distance from the glacier.  

 

Figure 2 – An overview of our data acquisition. (A) Fjallsjökull, leading into Fjallsárlón, as of 17th September 2021. (B) Raspberry 130 
Pi on the shoreline survey. The camera was stabilised with a small tripod, with hardware and batteries connected in a 

weatherproofed receptacle. (C) Boat survey, approximately 500 m from the glacier front, as captured by the UAV. 

 

In order to test the limits of the Raspberry Pi, we performed additional analysis on sub-section B (Figure 1). We collected 

images of the calving face from a portion of the shoreline of Fjallsárlón, shown as X to Y in Figure 1, which ranged from 1.2 135 

to 1.5 km from the calving face. Owing to bad weather, we only collected shoreline data for a limited section (covering sub-

section B entirely) before the glacier was obscured from view by fog. This experiment allowed us to assess how the Pi 

performed at long-range.  

 

We also conducted an additional experiment on sub-section B to determine the performance of the camera under sub-optimal 140 

conditions, by removing 21 of the 31 images captured by the boat transect and deriving point clouds from the remaining ten 

camera positions. This reflects the reality of the trade-off between data quality and practical considerations. In theory, fewer 
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images should result in a lower point density (Micheletti et al., 2015), but the monitoring network would be cheaper as fewer 

cameras are required. 

 145 

2.3. Photogrammetry and M3C2  

For images from both the Raspberry Pi and UAV, far cliffs (rock faces flanking Fjallsjökull; Figure 2A) were masked out prior 

to generating tie points in Agisoft Metashape. Images from the UAV were georeferenced using its onboard GNSS real-time 

kinematic positioning (RTK) system. Images from the Raspberry Pi were georeferenced by aligning them to images captured 

by the UAV and producing a sparse point cloud, before removing UAV images to produce the final dense point clouds. Point 150 

clouds from both sensors were therefore referenced to this RTK system only, rather than having a global reference (akin to 

Luetzenburg et al., 2021). While the Raspberry Pi images could be successfully aligned without UAV images, our workflow 

was designed to unify the coordinate systems of the point clouds and thereby avoid confounding co-registration errors in the 

cloud comparison. Eight high quality points clouds were produced from each of the Raspberry Pi and UAV at various stages 

along the calving face (locations in Figure 1) with a mild filter using Agisoft Metashape. Sub-sections were computed at natural 155 

break points in the glacier front geometry, at approximately 250 – 350 m intervals, owing to limitations in computer processing. 

We then cropped point clouds to the calving face, cleaned with a noise filter, and finely aligned the Raspberry Pi clouds to the 

UAV clouds assuming a 95% overlap in CloudCompare.  

 

Differences between points clouds from the Pi and UAV were compared using the Multiscale Model to Model Cloud 160 

Comparison (M3C2) tool in CloudCompare (Lague et al., 2013). M3C2 calculates a series of core points from the Pi cloud 

and quantifies the distance to the UAV cloud about those points using projection cylinders. This requires users to define key 

parameters, including the width of normal (D), projection radius (d), and maximum depth of the cylinder (h) (all parameters 

in metres). We followed approaches developed by Lague et al. (2013), and applied to glacierised environments by Westoby et 

al. (2016) and Watson et al. (2017), of calculating the normal width to take into consideration surface roughness and the scale 165 

of the model. We used a standardised value of 0.6 m across all models as this fell within the range of 20-25 x surface roughness 

for the vast majority (>98%) of points, following equations presented in Lague et al. (2013). Projection diameter was calculated 

as a function of point density, so to ensure each projection cylinder had a minimum of five points, we used a value of 1.1 m. 

Finally, we set the maximum projection depth to 10 m to exclude grossly erroneous values (<0.01% of all values). 

 170 
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3. Results 

3.1. Use of Raspberry Pi cameras in generating point clouds 

The Raspberry Pi-based camera captured high-resolution imagery across the full length of Fjallsjökull, at distances of up to 

1.5 km. Glacier textures and structures, such as debris patches and cracks in the ice, were clearly visible within the photos 

captured by the Raspberry Pi (see example imagery in Figure 3) to aid 3D reconstruction. The ground sampling distance (GSD) 175 

(the on-ground distance represented by one pixel) of the Raspberry Pi at 500 m range was 3.80 cm and at 1.5 km was 11.41 

cm (following calculations by O’Connor et al., 2017). By comparison, trail cameras used by Mallalieu et al. (2017), at a mean 

distance of 785 m to Russell Glacier, achieved GSD of 28.05 cm. We successfully generated point clouds along the front face 

of Fjallsjökull using the 315 Raspberry Pi photos captured from the boat survey. Eight point clouds were generated at high 

resolution, with survey lengths of ~250 – 350 m each. The full range of calving face heights observed at Fjallsjökull, from ~1 180 

m to ~15 m were examined in this analysis. Point clouds were largely complete, though many were speckled in appearance.  

 

 

Figure 3 – Example images captured by the Raspberry Pi sensor. Images A, B, and C are taken from the boat transect (~500 m from 

the glacier front) and have an approximate field of vision of ~100 m, while D is captured from the shoreline ~1.2 km from the glacier, 185 
with an approximate field of vision of ~400 m.  
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3.2. Comparison between Raspberry Pi and UAV point clouds 

Point clouds generated by the Raspberry Pi show a close comparison to those derived from the UAV, with a mean absolute 

error of M3C2 distance of 0.301 m and a standard deviation of 0.738 m across the Fjallsjökull calving face (Table 2, Figure 190 

4). Point density of all Raspberry Pi point clouds was high (<10 cm average spacing between points), allowing small features 

on the ice surface to be distinguished from ~500 m away. Extremely high M3C2 values (a threshold greater than 1 m difference 

between the UAV and Raspberry Pi) are found at the far edges of the models where fewer frames are used to produce the point 

clouds, and at the highest parts of the margin (particularly prominent in panel E of Figure 4). These values account for 5.03% 

of points (3.31% > 1 m; 1.72% < -1 m) and there is a slight positive skew (the Pi is overestimating the range to the glacier) in 195 

the error distribution with a mean M3C2 distance of 4.31 cm (Figure 5). 

 

Frontal 

section 

Points in Pi 

Cloud 

(million) 

Points in 

UAV Cloud 

(million) 

M3C2 mean (m) M3C2 Standard 

deviation (m) 

M3C2 Mean 

absolute error (m) 

A 2.446 0.634  0.097 1.079 0.445 

B 3.289 0.763  0.033 0.461 0.272 

C 1.793 0.602 -0.0001 0.563 0.253 

D 1.986 1.322  0.030 0.760 0.259 

E 2.025 1.346  0.055 1.020 0.363 

F 0.891 0.500 -0.012 0.694 0.334 

G 2.071 1.472  0.063 0.640 0.298 

H 1.276 1.171  0.048 0.530 0.229 

ALL 15.777 7.810  0.0431 0.738 0.301 

 

Table 2 – Key statistics and M3C2 comparison between point clouds generated by the Raspberry Pi and UAV. Frontal sub-sections 

can be seen in Figure 1.  200 
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Figure 4 – Fjallsjökull calving face running from northernmost (A) to southernmost (H) sections, as captured by the Raspberry Pi 

and UAV, and the M3C2 distance between each. Note varying scales between each section are to minimise white space in figure 

design. 205 
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Figure 5 – Histogram of M3C2 distance values across the Fjallsjökull calving face, combining all eight sub-sections together. There 

is a slight positive skew in distribution (mean 4.31 cm). M3C2 distances are cropped here to ±2 m for display purposes, but some 

values reach ±10 m. Bin widths are 0.05 m. 210 

 

3.3. Exploring the limits of Raspberry Pi cameras in producing 3D models 

We analysed sub-section B (~250 m long) under a number of other scenarios to explore the limits of Raspberry Pi cameras in 

SfM studies. Capturing images from the shoreline of Fjallsárlón, between 1.2 and 1.5 km away from the calving face (denoted 

by X and Y in Figure 1), increased the standard deviation of M3C2 distance (0.742 m compared to 0.461 from the boat transect, 215 

a 61% increase) and mean absolute error (0.341 m compared to 0.272 m from the boat transect, a 25% increase). The point 

cloud itself was largely complete, though visibly more speckled than the point cloud generated from the closer survey (Figure 

6). We observed similar patterns of error in the point clouds captured from the shoreline as from the boat transect, with the 

highest errors corresponding to ridges of jagged ice.  

 220 

Sub-section B was generated using 31 images from the Raspberry Pi in Figure 4 and Table 2; but timelapse camera arrays are 

generally limited to 10 – 15 cameras due to cost. We found that using a reduced set of ten images had little impact on mean 
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absolute error (0.263 m compared to 0.272 m using all images, a 3% decrease), but increased the standard deviation (0.627 m 

compared to 0.461 m when using all images, a 36% increase). This was most notable towards the periphery of the point cloud 

(Figure 6G), though the point cloud contains more gaps than the original. Sub-section B is approximately 250 m long and an 225 

individual image captures ~80 m of the glacier front, which means there was a low level of overlap (2-3 images at the right 

hand side, which is most speckled (Figure 6). Given the good quality of images acquired at a greater distance, positioning 

cameras further away to create more overlap between images would likely address this speckle issue.  

 

 230 

Figure 6 – Exploring the limits of the Raspberry Pi sensor in comparison to UAV. (A-C) Sub-section B as generated by (A) Raspberry 

Pi), (B) UAV, and (C) the corresponding M3C2 comparison. (D) Point cloud generated by Raspberry Pi when positioned from the 

Fjallsárlón shoreline, at a distance of 1.2 – 1.5 km, and (E) corresponding M3C2 comparison with UAV. (F) Point cloud generated 

by Raspberry Pi from ten images, and (G) corresponding M3C2 comparison with UAV. 
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4. Discussion 235 

4.1. Raspberry Pis in SfM-based glaciology studies 

Raspberry Pi cameras have rarely been tested in a glaciological setting, but our analysis suggests that they could feasibly be 

deployed for long-term monitoring purposes, and given their comparable quality to a UAV-derived point cloud, have the 

potential to capture and quantify dynamic events (e.g. calving). Our data show that, from up to 1.5 km away, Raspberry Pi 

cameras can detect small features within the ice and, when used to generated 3D data, could identify, with confidence, any 240 

displacement of ice over ~1 m in size. This also holds true for a camera setup using a much-reduced array; our experiments 

using just ten camera positions yielded results that were largely comparable in quality to those comprising the full-suite of data 

(31 camera positions).  

 

Improvements to research design, such as positioning cameras at a more optimal range of heights and angles, are likely to 245 

reduce error in the Raspberry Pi point clouds (James and Robson, 2012; Bemis et al., 2014). A key limitation of our research 

was that images were captured only from a fixed height in the boat. Indeed, it is no coincidence that we observed the lowest 

errors between the two sensors at approximately the height level of the boat across all point clouds generated. Therefore, using 

a greater variety of camera angles and positions, for example by positioning cameras above the glacier front using nearby 

bedrock or moraines, would likely reduce error across the model (Mosbrucker et al., 2017). While our setup and analysis 250 

therefore may represent a conservative view of the potential use of Raspberry Pis in photogrammetry, it also reflects the 

practical considerations of working in field environments, which are frequently sub-optimal for deploying fixed cameras.  

 

Our study used relative georeferencing methods, removing the need for absolute positioning of the clouds using surveyed 

ground control points. Over glacier calving margins, placing ground control points is especially challenging and alternate 255 

methods are required (Mallalieu et al., 2017). There is precedent in using the geospatial data from one point cloud to reference 

another when comparing sensors (Zhang et al., 2019; Luetzenburg et al., 2021). Alternatively, the positions of the cameras can 

be used to determine the georeferencing. This ‘direct georeferencing’ can be achieved using GNSS-based aerial triangulation 

of fixed positions, or an on-board GPS unit that shares the clock of the camera such that a precise time-stamp of location can 

be associated with each of the acquired images (Chudley et al., 2019).  260 

 

In this study, we cropped our point clouds to show only the front, flat, calving face of Fjallsjökull. This involved significant 

trimming of point clouds generated by the UAV (up to 40% of points removed), while the Raspberry Pi only required minor 

adjustments (~10% of points removed). A key limitation of the Raspberry Pi setup is that it cannot achieve the wide range of 

viewing angles and heights as a UAV does, and so analysis is limited to the front (i.e. vertical section) of the calving face. 265 

While this means the setup can monitor advance/retreat and calving events, the additional ability to generate a 3D model of 

the top of a glacier surface could potentially provide important information on calving dynamics, such as crevasse formation 
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and propagation, which could be indicative of imminent calving (Benn et al., 2007). In previous work, monitoring the glacier 

surface in addition to the calving face has enabled the reconstruction of events leading up to major calving events, including 

the calculation of strain rate and identification of propagation prior to calving (Jouvet et al., 2017). Furthermore, other glacier 270 

characteristics, such as surface velocity, can indicate imminent calving but require a more top-down view of the glacier surface 

(Ryan et al., 2015). Modelling a greater extent of the glacier terminus could be particularly important if such a system was to 

be integrated into a GLOF early warning system.  

 

For studies making use of a typical DSLR-grade handheld camera, James and Robson (2012) and Smith et al. (2016) suggest 275 

a typical relative precision ratio of 1:1000 – an error of 1 m when captured at a distance of 1000 m (though high-quality SfM 

often far exceeds this (James et al., 2017)). At 500 m distance, we achieved a mean absolute precision of 1:1667 and at 1.2 – 

1.5 km distance a mean of 1:978. These values almost match the precision thresholds set for DSLR-grade cameras, and exceed 

the precision achieved by similarly priced trail cameras using in glacierised environments (Mallalieu et al., 2017). While 

terrestrial laser scanners can achieve greater levels of precision for monitoring glacier fronts (e.g. Pętlicki et al., 2015), their 280 

high weight and cost (tens of thousands of dollars) often precludes their use in glaciology research. 

 

4.2. Future applications in glaciology and potential for automation 

Glacier dynamics at a calving margin are complex, but a low-cost timelapse camera array can offer insight into many key 

questions. Ice velocities at the terminus of Fjallsjökull range from ~40 m a-1 to ~200 m a-1 for lake terminating ice (Dell et al., 285 

2019). Glacier frontal positions and their diurnal variability can be monitored using this Raspberry Pi approach, as well as 

calving events that exceed 1 m in depth. Calving dynamics, including characterising different types of calving and the impact 

of seasonality and lake drainage, can also be monitored from timelapse cameras (Mallalieu et al., 2020) to aid in the 

understanding of how glacier calving contributes to the overall mass balance of a glacier and how this fluctuates over varying 

timescales (How et al., 2019; Bunce et al., 2021). Using timelapse photogrammetry, it is theoretically possible to detect 290 

precursors (rotation, elevation change, creep) to calving events on the order of magnitude of >1 m, such as observed at Sermeq 

Kujalleq 65 hours prior to calving (Xie et al., 2016). 

 

In addition to calving events, terrestrial-based photogrammetry based on a Raspberry Pi system could monitor other important 

glacier dynamics at a low-cost. There is a long history using terrestrial photogrammetry for monitoring glacier thinning to 295 

quantify mass balance change of mountain glaciers, though this typically involves repeat site visits (Brecher and Thompson, 

1993; Piermattei et al., 2015). Where surrounding topography allows, positioning Raspberry Pi cameras to look down on to 

the glacier surface would allow for SfM-based velocity calculation (Lewińska et al., 2021). Creep rates of rock glaciers have 

been successfully monitored through terrestrial photogrammetry (Kaufmann, 2012) and UAV surveys (Vivero and Lambiel, 
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2019), but again requiring repeated site visits. In each of these additional applications, low-cost Raspberry Pi cameras could 300 

produce accurate 3D models at a greater temporal frequency, without the logistical challenges, and financial costs, associated 

with repeating fieldwork. 

 

We speculate that, given likely sensor innovation and the decreasing cost of technology, the potential of low-cost sensors in 

glaciology research will only increase (Taylor et al., 2021). We envisage Raspberry Pi computers, or other microprocessors, 305 

to play a key role in this expansion. Almost all Raspberry Pi models have built-in WiFi which allows data sharing between 

individual devices. With a WiFi radio on-site, providing a range of many hundreds of metres, individual cameras could 

autonomously send their data towards a central, more powerful, Raspberry Pi unit for further analysis. Similar wireless sensor 

networks in glaciology have been produced to monitor seismicity (Anandakrishnan et al., 2022), ice surface temperatures 

(Singh et al., 2018), and subglacial hydrology (Prior-Jones et al., 2021). We speculate that an array of Raspberry Pi computers 310 

could produce the first near real-time photogrammetry setup for continuous 3D monitoring of glacier calving fronts. With the 

development of autonomous photogrammetry pipelines (Eastwood et al., 2019), this system could, theoretically, run entirely 

independent of user input. Furthermore, the flexibility of Raspberry Pi computers, particularly their ability to operate multiple 

sensor types from one unit, opens up the possibility for wide sensor networks across glaciers – creating comprehensive digital 

monitoring of rapidly changing environments (Hart and Martinez, 2006; Taylor et al., 2021). 315 

 

There exists considerable potential for low-cost sensors in mountain glacier communities, which are predominantly located in 

developing countries. Early warning systems situated around glacial lakes in the Himalaya have successfully prevented disaster 

during a number of GLOF events by allowing time for downstream communities to evacuate (Wang et al., 2022). By reducing 

the cost of camera-based sensors that are frequently used as part of a monitoring system (for example at Kyagar glacier in the 320 

Chinese Karakorum; Haemmig et al., 2014), more cameras can be situated to monitor calving rates, velocity, or stability at 

higher precision and accuracy in 3D. A low-cost also means that more community-driven initiatives based on this Raspberry 

Pi system are viable. Such systems must be co-designed, and ultimately owned by, the communities they serve.  Simple systems 

(such as Raspberry Pis), with components that are easily replaceable and with open access documentation, lowers the technical 

knowledge required to maintain an early warning system and so a greater diversity of stakeholders can engage with its 325 

maintenance. Previous work has shown that diversity in engagement, and genuine understanding of the social structures on 

which communities are built, is essential for the success of early warning systems like these (Huggel et al., 2020).  

 

4.3. Practical recommendations 

While we suggest that Raspberry Pi cameras offer an alternative to expensive, DSLR cameras for timelapse camera arrays, 330 

based on our experiences we note a series of recommendations to future researchers and communities looking to use this 

approach in their own systems: 
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• Camera setup must be carefully considered and adopt best practice set by others (e.g. Mallalieu et al., 2017) with 

regards to angle, overlap, and positioning; 

• Positioning cameras further away from the target (~1 km) where possible can capture a wider frame of reference 335 

while remaining viable for detecting change of magnitude >1 m, so fewer cameras are needed for an array setup; 

• There is only a narrow window of focus when using the Raspberry Pi 16 mm telephoto lens, particularly over 1 km 

from the target, and an in-field screen is essential to ensure correct setup; 

• In the absence of an in-field screen, SSH-based access to the Raspberry Pi can allow you to see image acquisitions 

on a computer screen or smartphone, though leaving wireless connectivity enabled draws more power; 340 

• Raspberry Pi computers draw very little power when commanded to turn on/off between image acquisitions, and 

can be sustained for many months using a lead-acid battery and small solar panel; 

• While Raspberry Pi cameras are robust and usable in sub-zero temperatures, adequate weatherproofing must be used 

to ensure that the camera lens does not fog over time. 

 345 

5. Conclusions  

We conducted a photogrammetric survey along the calving face of Fjallsjökull, Iceland, to compare a SfM point cloud 

generated using imagery from low-cost Raspberry Pi camera sensor to that derived using imagery captured from a UAV. We 

successfully produced point clouds along the front of Fjallsjökull, with a mean absolute M3C2 distance between point clouds 

generated by the two sensors of 30.1 cm, and a standard deviation of 73.8 cm. The Raspberry Pi camera also achieved sub-350 

metre error at distances of 1.2 – 1.5 km from the glacier. This error is comparable to DSLR-grade sensors, and highlights the 

potential for Raspberry Pi cameras to be used more widely in glaciology research and monitoring systems. For certain 

applications, we suggest, conservatively, that Raspberry Pi sensors are viable for detecting change of magnitude >1 m, such 

as calving events and terminus advance/retreat. With WiFi capabilities within the Raspberry Pi computer, real-time data 

transmission could open an avenue for autonomous photogrammetry to enable this system to be used in warning against 355 

geomorphic hazards. More generally, their affordability, flexibility, durability, and ease of use makes them well-positioned to 

rival more expensive timelapse systems without compromising data accuracy, while also enhancing the potential for autonomy 

and remote system management. 

 

Data availability 360 
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